Beherrschbares Risiko! Brandschutz für stationäre Lithium-Ionen-Batterie-Energiespeichersysteme

Lithium-Ionen-Batterien bieten eine hohe Energiedichte auf kleinem Raum. Aus guten Gründen arbeiten sie deshalb in stationären elektrischen Energiespeichern, wie sie im Zuge der Energiewende in immer mehr Gebäuden und Infrastrukturen zum Einsatz kommen. Damit verbunden sind aber auch charakteristische Brandrisiken. Wirkungsvolle Antworten auf diese Herausforderung bietet ein anwendungsspezifisches Brandschutzkonzept für stationäre Lithium-Ionen-Batterie-Energiespeichersysteme, wie es Siemens jetzt auf der Basis von umfangreichen Versuchsreihen entwickelt hat. Dieses verfügt bislang als Einziges über eine VdS-Anerkennung. Ein Beitrag von Gerd Hülsen, Global Fire Safety Applications, Siemens Smart Infrastructure.

Jede Lithium-Ionen-Batteriezelle besteht aus zwei Elektroden, der negativen Anode und der positiven Kathode. Sie sind durch einen Separator getrennt. Ein weiterer wichtiger Bestandteil ist das inonenleitende Elektrolyt. Allerdings birgt dieses ebenso so erfolgreiche wie in aller Regel auch sichere Funktionsprinzip einige bauartbedingte Risken. So sind die Batteriezellen gekennzeichnet durch das Vorhandensein großer Mengen chemischer Energie auf kleinem Raum und durch einen sehr geringen Abstand zwischen den Elektroden (Separatorschicht typisch ≈ 30 µm). Gleichzeitig sind die eingesetzten Elektrolyten typischerweise brennbar bzw. leicht entzündlich.

Ein Batteriemanagementsystem (BMS) übernimmt deshalb neben der Steuerung und Überwachung des Ladezustands auf Zellen- und Systemebene auch das Temperaturmanagement beim Laden und Entladen. So soll sichergestellt werden, dass die Zelle im definierten sicheren Betriebsbereich gehalten wird.

Thermal Runaway als Gefahrenszenario
Wird der sichere Temperaturbereich überschritten, kann es zu einem so genannten Thermal Runaway kommen, was im deutschen Sprachbereich auch als thermisches Durchgehen bezeichnet wird. Bei einem Runaway wird in der Batterie gespeicherte Energie schlagartig freigesetzt und die Temperatur steigt innerhalb von Millisekunden auf mehrere hundert Grad an. Das Elektrolyt entzündet sich bzw. das Elektrolytgas explodiert.

Im Zuge der Entwicklung eines Thermal Runaways verdampft das Elektrolyt mit ansteigender Temperatur sukzessive. Dadurch baut sich der Innendruck in der Zelle immer weiter auf, bis der Elektrolytdampf entweder über ein Überdruckventil oder durch das Bersten der Hülle freigesetzt wird. Ohne Gegenmaßnahmen wird dabei ein explosives Gas-Luft-Gemisch entstehen. Eine Zündquelle reicht dann aus, um eine explosionsartige Verbrennung herbeizuführen. Zudem kann sich ein Thermal Runaway in einem Batteriesystem von Zelle zu Zelle ausbreiten und so zu einem Großbrand führen.

Mögliche Ursachen für einen solchen Thermal Runaway liegen entweder außerhalb oder innerhalb der Batteriezelle. Im ersten Fall können extreme äußere Einflüsse, wie z. B. ein Gebäudebrand, dazu führen, dass die Temperatur in der Batterie über den tolerierbaren Wert steigt. Im zweiten Fall ist ein interner Kurzschluss Ursache für den gefährlichen Temperaturanstieg. Der Auslöser dafür wiederum ist eine extern beigeführte mechanische Beschädigung oder ein altersbedingter Ausfall des Separators durch Dendritenbildung.

Schutzkonzept zur Vermeidung einer Thermal-Runaway-Ausbreitung
Wie Versuche im Brandlabor von Siemens Smart Infrastructure in Altenrhein in der Schweiz an Lithium-Ionen Batterien unterschiedlichster Zellchemien (getestet wurden u. a. Lithium-Kobalt-Oxid-, Lithium-Mangan-Oxid-, Lithium-Nickel-Mangan-Kobalt-Oxid- und Lithium-Eisenphosphat Zellen) gezeigt haben, kündigt sich ein Thermal Runaway schon vor dem eigentlichen thermischen Durchgehen an. Ein zuverlässiger Indikator ist das ausgasende Elektrolyt. Sobald also ein Elektrolytgas auftritt, ist mit einem Thermal Runaway zu rechnen. Es bleibt dann aber noch genügend Zeit, um automatisch geeignete Gegen- bzw. Löschmaßnahmen auszulösen. Das heißt zum einen: Löschmittel in ausreichender Konzentration in den Batterieraum einzubringen, bevor der Separator der ersten Batteriezelle ausfällt. Und zum anderen über das Batteriemanagementsystem Abschaltungen vorzunehmen, die die Entwicklung eines Runaways durch Überladung oder Überlast möglicherweise noch stoppen können.

Die schnelle Flutung des Batterieraums mit dem Löschmittel verhindert, dass große Mengen an explosivem Elektrolyt-Sauerstoff-Gemisch entstehen und dass die Ausprägung eines ersten Thermal Runaways verringert sowie das Übergreifen auf benachbarte Batteriezellen gehemmt wird. Sekundärbrände und – durch eine langanhaltende Inertisierung – auch Rückzündungen sind ausgeschlossen.

Schritt 1: Detektion durch ­Ansaugrauchmelder
Ein entsprechendes Schutzkonzept muss also im ersten Schritt nicht nur eine zuverlässige Branderkennung gewährleisten, sondern auch eine möglichst frühe Elektrolytgas-Detektion. Diese Herausforderung erfüllen Ansaugrauchmelder, die mittels der Dual-Wellentechnologie sowohl elektrische Brände als auch Elektrolytgase bzw. -dämpfe auch bei hohen Luftgeschwindigkeiten und geringen Gaskonzentrationen zuverlässig detektieren.

Ansaugrauchmelder (Aspirating Smoke Detectors; ASD) entnehmen kontinuierlich Luftproben aus den zu überwachenden Bereichen und überprüfen diese auf Rauch- und Gaspartikel. Die Luftproben werden über ein Ansaugrohrnetz mit definierten Ansaugöffnungen angesaugt und der patentierten Messkammer zugeführt. Dort erkennt eine Auswerteeinheit die Größe der Partikel und deren Konzentrationen. Dabei lassen sich auch geringste Mengen von Brand- und Elektrolytgasen detektieren.

Schritt 2: Löschung durch Inertgas
Haben die Melder einen Brand bzw. Elektrolytgas erkannt, muss umgehend eine automatische Löschung durch eine Löschanlage ausgelöst werden. Nicht nur, weil eine Löschung mit Wasser in elektrischen Systemen zu vermeiden ist, sondern auch weil versteckte oder verdeckte Brandherde mit Wasser nicht erreicht werden, wird das Batteriesystem über Düsen mit einem gasförmigen Löschmittel geflutet. Dieses bringt auch verdeckte oder versteckte Brandquellen zum Verlöschen, indem es den für den Brand notwendigen Sauerstoff verdrängt.

Bleibt die Frage nach dem geeigneten Löschmittel. Auch chemisch wirkende Löschmittel scheiden in diesem konkreten Fall aus, da sich zum einen gefährliche Zersetzungsprodukte bilden und zum anderen Halteflutungen notwendig sein können. Damit bleiben die natürlichen Löschgase Stickstoff (N2), Kohlenstoffdioxid (CO2) und Argon (Ar) als mögliche Alternativen.

Diese unterscheiden sich im Detail. So wird das im Vergleich teure Edelgas Argon nur für spezielle Anwendungen wie etwa Metallbrände eingesetzt. Kohlenstoffdioxid, das effektivste unter den vorgenannten Löschmitteln, ist primär für nicht begehbare Bereiche oder Objektschutzsysteme vorgesehen, da es in der benötigten Löschkonzentration für Menschen gefährlich ist. Vor diesem Hintergrund wird reiner Stickstoff als Löschmittel verwendet, der auch für Lithium-Ionen-Batteriespeicher sehr gute Ergebnisse bringt.

Fazit
Lithium-Ionen-Batterien bergen charakteristische Brandrisiken. Ein anwendungsspezifisches Brandschutzkonzept kombiniert frühestmögliche Branderkennung mit leistungsfähigen Ansaugrauchmeldern und Inertgaslöschanlagen. Eine sehr frühe Flutung mit dem Löschmittel verhindert die Bildung großer Mengen explosiver Elektrolyt-Sauerstoff-Gemische, reduziert die Ausprägung eines ersten Thermal Runaways, hemmt das Übergreifen solcher Runaways auf andere Batterien und vermeidet Sekundärbrände sowie Rückzündungen. Mithilfe eines solchen Schutzkonzepts, sind stationäre Lithium-Ionen-Batteriespeichersysteme ein beherrschbares Risiko. Das von Siemens entwickelte „Schutzkonzept für stationäre Lithium-Ionen-Batterie-Energiespeichersysteme“ hat im Dezember 2019 als erstes und bisher einziges Brandschutzkonzept die VdS-Anerkennung (VdS Nr. S 619002) erhalten.

Business Partner

Logo:

Siemens Smart Infrastructure

Lyoner Straße 27
60528 Frankfurt am Main
Deutschland

Kontakt zum Business Partner







Meist gelesen

Photo
11.03.2024 • TopstorySafety

Die Zukunft der Gefahrstofflagerung

„Cemo“ dieser Name steht seit über 60 Jahren für sicheres Lagern, Fördern und Dosieren. Doch gerade in der Gefahrstofflagerung ist durch den massiven Einsatz von Lithium-Akkus in praktisch allen Wirtschaftsbereichen vieles in den vergangenen Jahren in Bewegung geraten. Zugleich mangelt es gegenwärtig an einer übergreifenden und verbindlichen Norm, wenn es z. B. um die Prüfanforderungen für feuerwiderstandfähige Lagerschränke für abnehmbare Lithium-Ionen-Batterien geht. Ein Umstand, der nicht zuletzt auf Verbraucherseite für viel Unsicherheit sorgt. Daher hat GIT SICHERHEIT Eberhard Manz, Managing Director und Geschäftsführer, sowie Jonas Sigle, Produktentwickler bei Cemo zum Interview gebeten.

Photo
30.04.2024 • TopstoryManagement

Wirtschaftsschutz: Verbände und Netzwerke als Schlüssel zur Resilienz von Unternehmen

Große Netzwerke, wie sie die Allianz für Sicherheit in der Wirtschaft (ASWN) darstellen, bieten Unternehmen jeder Größe eine kaum zu überschätzende Unterstützung zur Bewältigung der nicht zu knappen Herausforderungen in allen Bereichen der Sicherheit. Der ASW Nord fährt dazu eine Doppelstrategie: Bewusstsein schaffen bei den Akteuren – und Werkzeuge zur Stärkung der Resilienz von Unternehmen anbieten. Spezifisch um den Schutz von Transportvermögen und die Sicherheit der Lieferkette geht es dem internationalen Verband TAPA. Thorsten Neumann ist Vorstandsvorsitzender der ASW Nord und Präsident & CEO TAPA EMEA. GIT SICHERHEIT hat mit ihm gesprochen.